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Page 1 of 49

ON THE CORRELATION RADIOMETER TECHNIQUE

I. INTRODUCTION

The rnost important problem in radiometer technique is to obtain
the lowest detectable temperature, Such a minimum detectable temper-
ature is usually determined by the noise fluctuations in the receiver out-
put level, when the real signal is absent. Since the temperature is
observed in the form of thermal radiation special techniques must be
employed to reduce spurious fluctuations and internal noises produced
by the receiver circuits, and to differentiate them from the real signal,
The conventional method for reducing the spurious fluctuation and
noise effects of the receiver is to employ an optimum modulation of
signal, so that the spurious spectrum and noise would be cancelled out,
as in the well known Dicke-type system. !

Many types of radiometers have been investigated previously? »3:£,5:6,7
but the most commonly used one is still the Dicke~-type radiometer and
its various modified versions. In this paper, we wish to study the
possibility of the remarkable usefulness of the correlation radiometer,
and to compare it with the Dicke-type radiometer with gpecial emphasis
on millimeter applications,

The correlation radiometer consists of two receiver systems with
separate antennas, as shown in Fig, 1, Both antennas are looking at
the same signal source, thus the two signals S, and S, will be correlated
in time, and upon multiplication they will provide an output proportional
to S. Noise, N; and N, , introduced by each receiver will necessarily
have a low degree of correlation because of the random nature of N; and
N, ; thus the correlated output will represent the signal S plus some low
level correlation between N; and N, . In other words, the sensitivity of
the radiometer could be greatly increased due to the low degree of
correlation of N; and N, .

‘There are many advantages and disadvantages of the correlation
radiometer, For example, this system of two identical receivers would
be difficult to design in practice, and spurious fluccuations of individual
receivers may have more serious effects at the output of the receiver
as compared to the Dicke~type, Furthermore, the practical correlator
may have a bandwidth much narrowe: than the receiver bandwidth; in

1093-6 1
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Si() + ni (1)
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/

Fig., 1. Simple block diagram for the correlation radiometer,

this case the minimum detectable temperature would be increased due
to the loss of bandwidth, However, in the millimeter and submillimeter
wavelength region, and for radiometers used in space probes, these
disadvantages may be offset by some of the advantages of such a system,

In the first place, the correlation radiometer is a natural system
vo use for the interferometer, It means that.tracking or beam steering
can be performed on space probes by introducing a phase shift in one of
the antennas without any mechanical movements.

Secondly, the microwave switches in Dicke radiometers become’
very lossy and hard to build in the millimeter wavelength region.
Although the optical chopper may be used to replace it, it is hard to
achieve noise compensation with the optical type of chopper. Since
the correlation radiometer does not employ a switching mechanism, it
may have a better sensitivity in this respect,

Thirdly, in the correlation radiometer we can observe simultane-
ously two signals, which are coherent but have different signal strengths
at the receiver inputs, For example, a radio source and its wave
reflected by some body like the moon can be captured by each antenna
separately., The correlation radiometer can tihien be used te analyze
the scattering and reflection characteristics of the body.



Finally, it may happen that the radio wave from a source is
intertered with by some natural phenomena for one antenna while the
signal in the other antenna is unaffected. Then the correlated signal
can be utilized for the measurement of the characteristics of the
obstacles, similar to the double beam optical spectrometer,

Nectice that all these advantages (except the elimination of a
chopper) cau be achieved to a limited degree by the interferometer
type of radiometer using a Dicke-type of detection system, However,
its sensitivity mav be lower :han the correlation type of radiometer,
Consider again the example of the reflection from the moon, as shown
in Fig. 2. The reflected signal »>f the sun by the moon, SS' would be
quite weak compared to the background radiation of the moon, If the
Dicke-type of detection is employed both Ss’ and the background
radiation are chopped. Hence it may be quite difficult to distinguish
the contribution of SS' from the contribution of the '"noise'" (i.e., the
background radiation). But in the correlation radiometer, Sg,, and
Sé would have a high degree of correlation, which may yield a much
better sensitivity for measuring Sg. The beam steering properties
woulid be the same for both types of radiometers,

()

SSUn + N'
—

O g+ Soon™
Moon '

Fig, 2, A proposed experiment to study the bi-static
reflection from moon using a correlation
radiometer,

1093-6"° 3
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In this report we have made an analysis of the gain fluctuation
effects = nd other receiver characteristics upcn the sensitivity of a
correlation radiometer, An experimental model of the correlator,
the Halltron, has also been tested to examine the practical capability
of such a correlator, And finally, some comparisons between the
two radiometer techniques are di.icussed to evaluate the usefulness
of correlation radiometers.

II. MINIMUM DETECTABLE SENSITIVITY
OF A CORRELATION RADIOMETER

Consider the simplified block diagram of the correlation
radiometer shown in Fig. 1. Its final output power is produced by
correlating the two incident signals, S; and S, , and the two noises,
N, and N, , with the multiplier, Therefore, in order to determine
the minimum detectable signal in terms of an equivalent temperature,
AT, one musi evaluate the signal-to-noise ratio at the output of the
radiometer system, This may be found by calculating the autocorrelation
function of the output of the low pass filter. Let us first consider the
input terminal voltage of the receivers,

(1) S;(t) +ny(t) (§ =1,2)

where Sj(t) is the signal voltage and n; (t) is the noise voltage both
S; and n, are assumed to be random functions with zero mean having
G,a.ussiax{ distributions (j denotes the receiver number', The output

voltages of the receiversgbefore the multiplier, are expressed by

(2) () = AL () (Sy(t) + my(t) + ny, (0)

(3) vit) = Az (t) (Sz (t) + nz (1)) + n,, ()

where A (t) (j =1, 2) is the voltage gain of the receiver amplifier and
Njj(t) (j =1, 2) is the internal noise of the rcceiver. In order to make
calculation easier, we replace the noise terms {n.(t) + nij(t)/A-(t)} by

the equivalent noise voltages at the receiver input;)Nj(t) Gg=1, ZJ).



(4) u(t) = Ay (t) {S;(t) + Ny () }

(3) v(t) = A, (t) {S; (t) + N2 (t)} .

The gain of the receiver A {t) (j =1, 2) can be expressed by
(6) Aj(t) = A;', + AAj(t) (j=1,2)

where A. is the averaged gain a... AA;(t) is the gain variation, AA,;
can be as sunr}ked to be a random function with zero mean and Gaussian
distribution, Since signais coming into the input terminals of the
two receivers are coherent, the relation between S; (t) and S; (t) may
be given by

(7) Sz (t) =k S, (t + 9

where k is the amplitude factor,** and 91is the phase factor, including
phase differences resulting from both the wave path length and the
internal delay ih the receiver, Then the output voltage of the multiplier
is given by

(8) w(t)

u(t) ¢ v(t)

CAA ()
AA, (1+ A‘

)+ AAZ—!){OL (£) +1N; (£)}{k S, (£+0) +N, (t)}.
1

* The gain vari..tion of the ~ystem is represented by the gain variation
of the amplifier here, Theie may be many effects contributing to the
output amplitude fluctuation in the system; such as incident signal
strength fluctuations, mixer gain, IF amplifier gain, cor-elator non-
linearity, and so on, Thus the gain variation function is quite
complicated. It can be assumed as a random function as indicated by
Strum, 8

*% For the case where two identical antennas are looking directly at
the same source,K =1,

1093-6 5
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The autocorielation function of w(t} is expressed by

(9) Rylr)=w(t) w(t +7)

_ Pa & A
= A7 A0+ 1) +222 ) (1 (o2 (7) +o. (8 +oslr+0) o5l = 0)
A, A,

+ ¢S d’Nz + k? ¢S ¢Nl + chl q’Nz }

where 5., ¢ and q,,\, corresponds to the autocc. relation 1unction of
AA}lt) S&) axm \H respectwely Let us now assume that these
signal and noise functions are obtained by passing the white noise
thrugh a high Q band pass amplifier {(i.e,, pre-dstector RF or IF
circuit) and that the fluctuation spectrum can be treated as RC~-noise,
such that they are expressed’ by

{
30} $A, = Va, eoa;l |
J J
(11) ¢, =Y e-w-"'T'cosz
s s o
N }T }
(12) ¢Nj = \;;Nj e N; co8 LT

where q;A, ¢g and tpN are the mean square value of AA, S and NJ,
respectively; wp . is the cutoff frequency of the gain fluctuation
spectrum; w, and vy, are the halfbandwidths of the bandpass amplifier;

and wy is the center frequency of the amplifier, By substituting
Eqs. (10), (11) and (12) into Eq. (9), we get

¢ -
(13) Ry(r) = (1+"£§'1" e Ay d ')(1 +?f—:— e-wAZ’T ]){kz [q:: e Zws"" ’coszw T
1 2

2 w200 2~ ({7 +6|+]r -0])

+y e 8 cos? w8ty e coswy(t +6coswelr ~6)]

~lwg +le ) 'T f coszwo'r

wle o, )]
g by, e (wg TON, )7 | cos? woT + k2 Yy, ©
* iy, ¥, e~ N, 9N, 153 cos? wor }

6



2 2
where we have ueglected the constant product A; A, .. The dc component
of Rl (T ) is

3 - 8
(14) Ri(r)] = 1Py ? e 8 cog?

w0
s o

which represents the signal componeéni, Thus R;(7) is the correlated
output after the multiplier but before the integrator, which is essentially
a low pass filter. Thus the output of the low pass filter is

~j2uf{r ~t°)
e

(15) Ry(+) = S“YRI(r) | winl dr df

where W (f) is the tranefer function of the low pass filter, If we
assume that the integrator (i.e., the low pass filter) has the same
transfer function as an RC network, then

(16) | wif)] = (w = 2uf)

where wy, is the cut off angular frequency. The correspondirg
impulse response is

a7 Gir) = g fo(]® J2TE g
- e 8™ 46w =2m9)
-0 1T (-——-—)2
wy,

. %L e"leTl

e pe—— -

2

The output noise power is the mean square value of the ac terms of the
low pass filter output voltages; in this case it can be derived from
Eq. (15) with v/= 0, that is,

1093-6 7
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o Pt
WL -wp T

{18} R, (0) = g‘ {Ry () "Rx('f)j!dc} P e

MO

dr .

Substitution of Eq. (13) in Eq. (18) yieids the following R, (0) after
making some algebraic manipulations and neglecting the terms
containing Zw,, which are filtered out by the pass characteristics cf
the network.

cwp 8 ~{2wgtwp)e
s ¥ 1 -2wg § 1~e™“L e
na oy 2 _T 2.2 S s + . =
{12y R, {0} > [K Vg 12“}5 +wL + {e ey Zws Yor, }Cos woe}
1 2 1
+ ; + K @ g
+on, by, .
®N, +“’N;_ twy,
i ca~(w twp )0
+..qi£‘:1.{kz¢z( 1 J,(e-zwsele L 1
Ay ! L " %a,
~(2wg twy Twp )6
+ £ ° ! )cos Zwoe)
2 wg + @y, + WA,
1 1

+ ¥ SQ‘NZ

I}Z }
toy, tw; o, Ys¥,
ws « w W 1 w

aN2

s +(.0Nl +wL +wA2

, +{e "
A, wg, twp,
-{2w_+ wi, + WA, )e
+& 5 z ) cos 2 woe)
1 1

ws+wN2 +QL+wAz +le *del»wAz

1
tin, YN, oy, *ON, twy toy, 3]




In Eq. (19), higher order terms of the gain fluctuation ratio,
such as N [/ A;? times YA [A; %, are neglected, since they are very
small quanfities. The baniwidth of the signal spectrumn and noise
spectrum are usually much larger than the low pass filter bandwidth,
that is, wg >> Wy, WN. 2> Wy and wo>> Wy w°>> Wp , Wg 2> wg and
wg >> O'N-j' Thus R, {0) may be expressed approxirdately as

WL 5 -2y O "‘Z(&) e
~ e, i L e l-e L e s
{20) R, {0) =-£--— fx” ‘Pg { % + {e 2'_,58 . o0 + Zo, Jcos zwoe}

1 : R S
t g d’Nz wg + wN, +k [ Q’N! wg ¥ wN,

1 i P
H B e m—————— 1 + WA‘ + Az .
+ q‘Nl WNZ le 4 “;NZ } ( A]z :&7 )

Since the noise spectrum and the signal spectrum may be assumed to
have nearly equal bandwidths, then wg = WN, T ©N, T @i Thus we
get

1 @L -Zeo. YIRS B
(@) Ry (0) =5 o= [14g {1+ (e “if, 170 70 0 +em?wi®. Jcos 2 g}
1 w
L
YA, YA
g by, tK U by, * N, Y, Ja +A----~1—z + =4 ).
. 1 2

The output signal-to~noise ratio is given by
Ry~

22) S - Ri(r)]ac

N R2 (0)

20;9 2

2 20
k \llsze i"cos® wy,®

1(&)

Y 'J?'Ikz ¢28{1+(e‘2“’i9—2-:-1i:  -e" 2L 4e™ 29 Gcoszadbrieby, K detin, HIN

g
Q1 +ié_z.+..ﬁz ).
A2 A,

1093-6 9
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We may put 9 equal to zero in Eq., (22) without losing any generality,
since it is always possible to cancel out any phase difference by
adjusting the phase of the receiver. Then Eq. (22) becomes, for 6= 0

and 2w; = wr{wy i the bandwidth of the pre-detector amplifier).

2k
(23) s’

NN g PR by * by (1424 + B
1 2

This S/N ratio result can be simplified further if one knows the
2pproximate magnitudes of the signal and the noise,

2.1, The Effect of Input Signal Strength

a, Small input signal case

If qq\% is assumed much greater than 4;82 » We get

s 2Kk §.2 wp 1
Ny, by, oL (+ -:-% A 2)

4

where L ¥y and §, correspond to the mean square value of the voltage
functions, o-s » ON° and o A , respectively, that is, they are
proportional to the power in the signal, noise and mean squ~are value of
the amplitude fluctuations, respectively,

The minimum detectable signal temperature AT is usually
defined as the AT that would produce enough signal power to give
unity ouiput sigral to noise ratio,

Putting S/N equal to unity, and substituting ¢ for §, one obtains

2

1 Wi, TA TA 2

(25) oy EoN,C oN, D c IR L+ =20 4 2y,
1 2 2k wy sz A,

From the equation for Johnson noise power, we know

(26) o =x- AT

10
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(27) on; =k ToFj (=12

where k is the Boltzman constant, T, is the input noise temperature
of the receiver, and F; is the operating noise figure of the amplifiers,

Therefore the minimum detectable temperature difference under
the condition where there exist gain fluctuation in the receiver is:

2 2
T, | F1 F i w TA o
(28) AT = o =L 4 21 4 B .
— 2 2
J2 k J Wy Ay A,
(AT << T,)

The fluctuation factor in Eq, (28) is approximately expressed by

2 2
. 1 TA o
(29) T = —2— (--—--1-;-- + Az ) .
A, A’

When F; = F, = F, Eq. (28) could be combined with Eq. (29) to give

T F wi,
T = s
ﬁk wI

Usually the gain of both amplifiers would be the same, However, if
one input signal is much smaller than the other one, the gain of one of
the receivers may need to be increased to become larger than that of
the other receiver,

. (141

(30) JAN

C%nsiderlng such a case, we put A, 2 - ad, 2 , O Z - Bo p
and ¢ A /A, = k; and substitute these quantities into JE.‘.q.2 (29). Then
1
1 B
(31) r=-—Kk@+ ~ )
2 a
= kl X
11



where

{(32) x=i(1+E).
2 a

Tue velation expressed by Eqs, (31) and (32) is plotted in Figs, 3 and 4.
One could easily obtain the gain fluctuation factor for any combination
of o and B from these figures, For example, if the gain of one receiver
is 6 db larger ‘han that of the other receiver, say @ = 4, and the
fluctuation power of one receiver is five times larger than that of the
other receiver, say B = 5 we get x = 1,125, or T =1,125(%) whan the
fluctuation rate of one receiver is 1%, say k; = %) .

From Fig. 4, we could determine directly the maximum 8 that
could be allowed for a particular set of values of gain fluctuation factor,
¥X, and the gain ratio of the receivers, a.

f 35 \ ,
g 3 30 \\\\ \
x 2.5 \
5 \ \ N,
3 2 2.0 \ \‘/O
8§ N ~X
é’ x 1.5 - =5 \-
s N3
s <

:; I 1.0 4 \Q\&\\__
-~ B = O ————— =
e 0.5

0 )

0 n 2 3 4 5
o B
(3db) (6db)

Fig. 3. The relation betweer gain ratio in each receiver
and fluctuation factor — x=1/2 (1 + /)
(fluctuation factor)p = x * k.

1093=6 i2



1093-6

O

0 X=0Q.5
0 I 2 3 4 5
a e
(3db) (6dbj

Fig. 4. The relation between gain ratio and fluctuation
ratio of each receiver,

b, Different signal input case

In this case we assume that there exists no gain fluctuation in
s 2 _ 2 _
the system; i.e., O'Al =0p, ° 0.

From Eq. (23), we obtain

) S 2 Wy
(33 i
N 2+ ....1__. + 1 + 1 wy,
R, R, RiR,;
where
$ K
(34) R, = —2 and R; = —— .
4’N, PN,

13
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If the one input signal strength is much larger than the other and if we
assume that \le = q;NZ we obtain the following relations;

(1) when R; >»1 >R,

S wy
(35) - =2R,; * ——
N Wi,

(2) when R; >R, >1

(36) S . 21 .
N

This result means that in the case of large input signal-to-noise
ratio the output signal~to-noise ratio is only determined by the ratio of
the amplifier bandwidth to low pass filter bandwidth, similar to the
case of detection of a continuous modulated signal.

¢, Equal input signal strength case

In this case k =1; i,e., R; = R; =R (when §p, = q;Nz ), thus

(37a) : =
a N = *
N~ ,,2 .1 w1y,
R R?
2 R? W]
(37b) = o °

2 R +2R +1 w7y,

When the input signal-to-noise ratio is very large

wiI

Wi,

S
(38) - - (R>»1) .
N

When the input signal-to-noise ratio is very small

(39) 5 _2r* YL . (Rec) .

N
WL

14
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Equation (38) shows the same result as Eq. (36) with unity k and no
fluctuation. Equation (29} shows the same result as Eq. (24),

{(putting YN, = UN, = Y 3nd $s/§p= R in Eq. (24)).

Comparison of these results with Goldsteint!s results® shows
a slight difference in the factor J 2 of the coefficient of minimum
detectable AT. The reason for the difference is that Goldstein
assumed a different band pass characteristic for the receivers and
filtes 5,

This difference of JT?.— is just the ratio of the rectangular
characteristics (assumed by Goldstein for both the receiver and
low pass filter) to the band pass and RC characteristics (assumed
by us in this report for the receiver and the low pass filter,
respectively), With this difference in mind, our results should be
considered to be equivalent to Goldstein's results,

2.2, The Effect of Gain Fluctuation to No:se Figure

The noise figure of the system may be described as the root
mean product of the noise figure of each receiver, neglecting the
noise in the multiplier and low frequency amplifiers, as shown in
Eq. (28).

In the preceding analysis the noise figure was assumed to be
constant, However, the noise figure would be varied by the gain
fluctuation in the system, depending upon the type of receivers used
for the radiometer. For example, if one used a conventional superheterodyne
receiver, where the noise figure of the receiver system is predominantly
the noise figure of the mixer, then the effect of gain fluctuations oa the total
noise figure would be small, On the other hand if some low noise mixer is
used such that the noise of the receiver is predominantly due to the noise
of the post mixer circuit, the noise figure would be affected significantly
by the amplifier gain, To estimate the seriousness of gain fluctuation
upon the noise figure of the amplifier we shall consider a special case
where Nj is considered to be independent of the gain, The noise figure
F is expressed by
(40) F=1+ ...,I_\IL. .

.Pl. Nl



Thus if the gain, A, is changed, F should be varied by the influence of
the gain variation, That is

(41) °F .1 .M .
d A AP N

From Eqs. (40) and (41), we get the relation

F
(42) oOF .oa
F -1 A

If we could assume that OF equals (F(t) - F) and A tc (A(t)-A)
approximately, the following relation would be obtained,

(43) Ft)=(Q1+T)(Z=1)+1
where I = _léﬁ;é‘_l_ .
A

The noise figure for effective temperature is expressed by
(44) F _=F

T
=(LrD)(Fy-1) + -2

To

where T, is the effective injut temperature of the -eceiver, F, is the
standard noise figure an” T, is the standard temperature, say 290°K,
Thus the variation of the noise figure due to gain variation is given by

T 1
(45) IEF = [{0+ n)F,, -4 +'§ix1 {0+ &) Foy 1) +22)]°
o} O

1093-6 16
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2,3. The Effect of Unequal Bandwidth

The receivers in the correlation radiometer may have different
bandwidths, In order to calculate this effect on the minimum detectable
temperature, let us assume that the bandwidths (i, e., one half of total
widih) of the receivers are wy = Wy, = O andwg = “’nz =w; » From
Eq. (19), we obtain the followmg relatmn, for e—

(86) R, (0) = —= [ 2 o by o
2 \V) == +
2 8w tor, s N2 wp Top,
1 bN, ¥
HR gy T b ]
’ ng Ii wIl IZ
1 w 2
= . L 2 , 2
= - "——-—:-*_—(—;-—- [Zk qls + q‘sq’Nz +k qu‘N; + ‘le ¢NZ }
2 wll Iz
where the gain fluctuation terms are neglected. Assuming wy, =awy »
then
(47 R (o)-—é-:).l_‘. [2k* ¢ % + + k% ]
) 2 \V)=2 . b qls\lez Y ‘le ¥ ‘PNI ¢Nz .
W, l1+a

From this result, we conclude that the effect of the different bandwidths

of the receivers would increase the minimum detectable temperature by

a factor of {1 + a). For carefully constructed receiver, o should be
small. Thus it would not affect the minimurn detectable temperature
significantly, even if a varies with time, as we sometimes see in practice,

2.4, The Effect of Receiver Phase Eryors in 1_,_"_1_3
Dicke and the Correlation Radiometers

In the Dicke system, phase errors between the chopper and the
coherent detector in the receiver may be observed at the receiver
output as a correlation error, and the signal-to-noise ratio would be
changed to some extent,

17
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For convenierce's sake let us consider Goldstein's treatment, °
in which the multipiier output w(t) is expressed by w(tj = v(t) sin 27 qt,
where v ({t} is the output of the band-pzss filter {Fig. 5) and q is the

Noise %y = —‘Z—S(t)[H Sin 21rqt‘ +n(t)

(t) e
Signal @ . Squc:e
S(;-)--—* Modulator F———>4 Amplifier =  Lew
Detector _
* fot 4 xit) = ky &)
Sin 2wqt

Sin 2 wqt Multiplier |= Barfd Pass qt,é
, ? Filter 2

w(t)=v(1)8in21rqt7/1 v(t) = [A-!-Bm(t)} Sin 2 T gt

Low Pass
—— Qutput
Fitter |7 P

Fig. 5. Model of the Dicke-radiometer,

frequency of the multiplier input, 'which is also equal to the modulation
frequency. v{t) can be written, as Goldstein showed,

(48) v(t) = [A + B m (t)] sin 27 qt
as the output of the band pass filter, where A and B are constants and

m(t) is a random voltage, which represents noise components, If
.~re would be some phase error of amount ¢, -:{t) can be written

(49) w(t) = v(t) sin (27 qt + ¢) ,
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By substituting Eq. (48) into Eq. (49), w(t) is given by
(50) »(t) = [A + B m(t)] sin 2% gt sin (27 qt + )

while w(t) = [A + B m(t)]sinz 2w qt in the case for no phase error.
The autocorrelation function of w(t}, neglecting tcrms that are
removecu dy the low pass filter, is then

(51) w(t) w(t + ) = Rs(7) * cos® 4

where R,;(7) is the autocorrelation function of w(t) in the case of no
phase variation. Thus we obtain

S So 1
{52) T m — ”

N N, cos® ¢
where So/No is the signal~to-noise ratio in the case of no phase
variation,

in practice, ¢ inay possibly be changing with time, and should
not be considered a constant. However, if the amount of phase
variation in the receiver were very small, ccs? ¢ would be near
unity, so the signal-to-noise ratio would be practically unchanged.

For a correlation radiometer, phase errors would cause much
smaller effects at the output, because the multiplier output of the two
signals in the correlation radiometer is determined by the autocorrelation
function of these two variables, and the autocorrelation function is
independent of the phase factor, 6 shown in Eq. (17).

2.5. The Effects of Correlator Characteristics

In practice, one would expect that the correlator (i,e., the multiplier)
may have certain characteristics such as nonlinear characteristics,
limitation in bandwidth, and correlation error due to finite integration
time, that would tend to increase the minimum detectable temperature
of the correlation radiometer,
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(a) Nonlinearity

Let us consider first the nonlinearity of the multiplier, Since
the multiplier characteristic is not perfectly linear, an erxor dué to nonlinearit
of the multiplier would be anticipated, Assuming that the correiator
has a nonlinearity factor 5, the output of the multiplier can be expressed
by the foliowing formula:

1+ 5
(53) wit) = {u(t) - v{t)}

where all the notations are the same as the ones used in Fig. 1.

Hence

1
(54) wft) = {{(S1 + N1 )(S; +N;)} ¥o

-~

1456 S 1+6
= (N, N; ) 1+ 2ya+ 52y

N N,

1
S 145
NN, {1+ _2)Q o2t 0

Ni N;

In the case of small input signal-to-noise ratio, w(t) is expressed by

5 Sz
{55) w{t) =N, N, {1+(1+86) — } {1+(1+5)—}
N, N;

Sy S S S
=N, N, {1+(1+6)(~:1-+-—z-)+(1+5;" 172

=N,N, +{145) (SN, +S, N) +(1 +8) 5,5, .

1+9
1+ x) has been approximated by 1 + (1 + §)x for x<<'1
The autocorrelation function of w(t) is given by
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O 2 o —
(56) Ry(r)=N;N; +(1+8) (SN; +5;N,) +(1+8)* 5,5, .
Here, as in Section 2,1 we assumed that

Sy = S{7)

1]

Sz kS(T + 9

and the autocorrelation function of N and S are taken to be 9, and g,
respectively. Thus Eq. (56) can be written as

(57) R, (1) = dn, )by, (1) +AH8) (o,00) ¢, (n) + K20 (x) oy 1))

K1+ 6)% {92 (7) + 0, (O +o (r+8 o (r-a).

Again signal and noise passed through a band limited circuit are
assumed to have the following properties:

{58) pglr) = P e—ws!'r | COs w T

o ,(T) = ¢, e=ulT| cos w,T

Hence,

- o,  tw ) :"' ‘ 2
(59) Riyfr) = L q;nz e 'm m cos? w T

HL+0)" (0, ¥y, e-lws ton )| | 12 Yo, o s m e ')

2

c T
o8 wo

2w |T
+k° (1+6)‘¢sz{(e s‘ | . cos® wyr

+ e-wsd'r +o] + |+ - of), cos wylr +8 cosw (T - 6

+ e-z“’se~ cos’ w, 8}
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The signal component is the dc component of R, (t), thatis

- 2 2 4 ..2(‘,9. 2
RI(T)]dC- ¢f K L+ Bt e T8 . cos® 0 8 .

The noise output power of the low pass filter is given by Eq. (59).
Therefore we obtain the following equation:

(69) R; (0) = —= [y, 4 : FA+E) {b¥ -
2 s Yn; %n, “p, Fon, s'n, wg + oy,
. o~ 20 0
2 1 o ———e 4
+k gy oy F oy J+ K ' 2(149) {—‘"‘ + — Z o,
1-e 9L -
+ e ste} I .
wL,
wy
For 8= 0 and wg TWp, Ty, T35
w 2 =
(61) Re (0) =5 <L [y, 4, , HOH0 Wb, +IE Yty 42602 (140)4]
2 o
Hence the signal-to-noise ratio is given by
S 2 2k (1 + 5)* w
(62) &= z Yg k" (1 +70) ) wx
2 2
L4y, 4, +048) (ot % by 142K 47 (148)* ] L

which can be rewritten as follows, similar to Iq. (33),

2(1 + 6)* wy

(o + = )+ —
— S ———— ‘4\)
Ry, R, R, R L

(63)

AR

2(1 + 6)* + (1 + 5)°

where we assumed “’N =¢_ . Error due to nonlinearity may be
defined by a, that is N,
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where S_/N o 18 the signal-to-noise ratio without nonlinearity., From
Eqgs. (33), (63) and (64), 2 is given approximate. r by

Z6(R; + R, +2)
(65) a = i
2() +48) RyR, + (1 +28) (R; + R, ) +1

(6 << 1)
Let us consider some special cases,

(1) for the condition R; << land R, <<,

166) a = 45

(2) for the condition R; >»>1 >R, ,

(67) a =205
(3} for the condition R; >l and R, >»1,
a=0,

In all cases, as the nonlinearity factor § is always much less
than unity, we are able to say that small nonlinearity of the multiplier
does nct significantly affect  the output signal-to-noise ratio,

One thing for which we must take care is the input signal level,
which may be amplified up to or near to the saturation level at the
input of the multiplier, This occurs when the input signal streagth
is large and the amplifier has sufficient gain to cause saturation of
the signal level, At or near the saturation region, & would no longer
be considered much less than unity, and the error due to the nonlinearity
factor would tend to increase as b becomes large.
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(b) Bandwidth limitation

The limitaticn of the multiplier bandwidth and its operating
frequency is a serious problem in a correlation radiometer. Our
devivation is valid when the raultiplier is able to operate at the
frequency of the preceding amplifier and has a bandwidth as wide as
that of the amplifier, Consider the following example., Let the
receivers be two superheterodyne receivers having two if amplifiers
operating at 30 mc with 4 mc bandwidth., If the multiplier could
operate only between 0 and 1 mc, then the output voltages of the
if amplifiers will not be correlated by the multiplier at all, Ifa
square law detector is inserted between the amplifier and the
multiplier, then the correlator would correlate effectively the outputs
of the detectors within its bandwidth, In this case the minimum
detectable signal (M, D, S,) is proportional to the ratio of wi, to wy,
(c-f., Appendix I) where wj, is the cut off frequency of the post
multiplier integrator and wp the cut off frequency of the low pass
filter following the detector,

The bandwidth of the multiplier w,, should be the same or larger
than that of the low pass fiiter, It follows that with the small bandwidth
of the multiplier the M. D.S. would be increased by the factor of wp/wp.
The same result would be obtained if the square law detector is replaced
by an heterodyne receiver which transfers the band pass spectrum of the
output of the if amplifier to a low pass spectrum, Usually w)s is much
smaller than wj, thus the signal=to-noise ratio is limited by wy,/wj .

For the case where w)f is larger than wy the maximum signal-to-noise
ratio would then be limited by the ratio of wj/wy,.

If we conld expect to utilize a correlator that has high operating
frequency and wide bandwidth by means of, for e.-- mypie, electronic
devices such as a heterodyne detector, the discu- ‘- 2n made above
might no longer be necessary.

{c) Error due to finite integration time

Another important problem in the correlator is the error due to
the finite integration time, Output signal-to-noise ratio is affected by
the integration time of the correlator., In our derivation we have
assumed that the integration time is infinite, while in practice it
should be finite, as the averaging over an infinite time interval would
be experimentally impossible., When the integrating circuit has the
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the form of RC low pass filter and a finite duration of observation
interval T, is used, the S/N measured is expressed by

2 -
Ry, (ro){l-e “’LTO)2

S
(68) = ] = T
N Jmeas. QLS. © emoLT [1~e-2wL(T°-T)]R§(-r)dT
0

as shown by Davenport,'!® where R;,(r o) is the mean value of the
product function and R¢(t ) is the autocorrelation function of the
product function minus the mean value R;, (1 ), that is to say,

(69) Relr) = Ryiv) = Ryz 7))

where Ry(7) is the autocorrelation function of the product function,

The specification of ''small" T, or "large’ T corresponds to
the requirement that T, be small or large vomparef’ to the filter
time constant 1/wy,. Let us consider the S/N] eas. for these two
limiting case for T,, For very large values of Tor the S/ N]mea.s
becomes independent of the duration of the observation interval as

follows:
2
R (ro)
(70) -IS:I} = 12 ° as T, ~o .
R e T
meas, wLS‘ A Rg('r) dr
0
For very small values of T,
2
S R'l 2 (TO)TO
(71) = = T as T, >0,
N o T
meas, zg Q- —) R;(‘!') dr
o T, '

Equation (65) is derived for the case where the upper limit of integration
is assumed to be infinite, From Eq, (63) signal-to-noise ratio can be
maximized  for a given observation time with
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(72) wy, = — .

Substituting Eq. (72) into Eq. (24), we obtain

Z‘UZ

S k™ g
{(73) = =0,27 0, T ——r— .
N I $
Nx NZ

The minimum detectable sensitivity is given by

e

(74) og? =0.70 " (wyT)” .

bl

The relation is plotted in Fig, 6 for the case of k = 1 and 4 mc bandwidth;
say f; = 4(mc) where

(75) £, o= .
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observation time.
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III. COMPARISON OF T-Z DICKE AND CORRELATION
RADIOMETER

{a) General Conception

The Dicke type radiometer has been mest commonly used at
microwave frequencies because of its ability to overcome noise and
gain flvctuation effects, to give low miniraum detectable signals.

However, in the millimzier wave region, low noise electronic
switching schemes are exiremely difficult to employ. Although
mechanical choppers could be used in front of the receiving horn,
noise compensation would be difficult to achieve with mechanical
choppers. Additional noise from the millimeter vave components plus
the noise contributed by the choppers would tend to increase substantially
the minimum detectable temperature, especially at the shorter m.m.
wavelength.

On the other hand, the correlation radiomete:r eliminates the
chopper system. We have shown that the effects o! gain fluctuation
on the minimum detectable sengitivity (M.D.S.) are nearly the same
as in the Dicke system. Furthermore, there are many merits of the
correlation radiometer for applications in space exploratory observations
as discussed in the introduction. Therefore if an ideal correlation
radiometer could be built, it would be superior to the Dicke system,
especially for m.m. wave applications. In practice, the most serious
drawback of the correlation radiometer is the limitation of the M.D.S.
due to the bandwidth limitation of the multiplier. Because the muliiplier
bandwidth is usually much smaller than the amplifier bandwidth, the
M.D.S. is limited by the ratio of the multiplier bandwidth to the
integrator bandwidth rather than the ratio of the amplifier bandwidth
to the integrator bandwidth. Therefore,; the practical construction of
the multiplier seems to be the most serious problem in the correlation
radiometer .

(b) Sensitivity

To make clear the comparison of a correlation radiometer with
a Dicke radiometer, let us consider the temperature sensitivity of the
receiver as an example, taking some special cases.

The output signal-to-noise ratio is expressed by
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2 Wi

S _ —_—
~N L
N 2+._1_.+__1___ 1 @

R] R-Z R Rz

(33)

as we have already shown in the preceding section.

For the case of small input signal strengthe, with both signals
and amplifiers identical,

wy
{39) -IS:I = ZR,Z . ;—;— (R-l =R, = R).

In this case the sensitivity is defined as the signal power to give unity
output signali-to-rioise ratio. Input signal-to-noise ratio R can be
directly expressed in terms of temperature as

bs
76 R= -2 = AT
(76) by T

n

where T, is the internal noise temperature, F T, (Fig. 7). Thus by

FeTo

T.>.__- Amplifier o

Output € T, T,
Q—]LpFl—
FeTo
i es )
T2>—-—-—-—-— Amplifier Wy To Fe /wr!

T = Tp= AT < FeTo

Fig, 7. Model diagram of the correlation radiometer in the
case of small input signal strengths,
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substituting Eq. (76) into Eq. (39}, we obtain

F.T WL
(77) AT = =822 ,__.._
2 | “1

In the Dicke-type radiometer, (Fig. 8), we can expect the same
sensitivity as the correlation radiometer shown in Eq. {78).

{78) AT = K F,To Jri‘_é.
w]

where K is z constant.

FeTo A
Y Oufput ©€ AT
AT)-—-— Chopper AD";;*.’;:;;? Integrator —o
wr W
Reference (Y
AT =k x ToFe /@,

¥Fig. 8. Model diagram of the Dicke type radiometer,

We may say that in the cimplest case, where both amplifiers
and both signals are identical and the input signals are very amall
coinpared to the internal ncise of the receiver, the correlation and
Dicke~type radiometer arec comparable, except for a factor of order
unity from the coefficient K.

For the case of diffe,ent input signal strengths, in which we
are most interested because of the posaibility of making reflection
mer? -irements, the oufput gignal-to-noise ratio, for a special case,
is expressed by
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(35) S 2R, 2L (g >>1>R;)
N wI

where the assumption was made that Ry > 1 >> R, , and §N; = 9N, »
that is, one input signal strength is much larger than the internal roise
of the receiver {T1 > F¢T,), and the other input signal strength is
much smaller than the internzl noise (T; << F Ty).

For this case; if the output signal power is much larger than
the noise power, the concept of the minimum detectable sensitivity
would no longer be adequate for characterizing the receiver {c.f.,
Appendix II). It would be better tc define a differential temperature
AT, which corresponds to an increment in the output signal power,
which also has the meaning of an accuracy of measurement. It is
expressed by

AS  _ ., AT
79 = =k ==
(79) -k AL

where T is the temperature corresponding to the output signal power,
and k is a constant. Since the output signal power is proportional to
the product of the two input signal temperatures (Fig. 9)

(80) S=CTiT,
= C K2 T2
FeTo

T epe
;>————- Amplifier wr

Output S
)—LpPFl—s o

FeTo Wy
T, >——1 Amplifi W, (S
2 mplifier FeTo L 0.

T, > FeTo AT =— iu!;e‘ro «/SL (—S—Q»g)
T, = AT << FeTo 1o

Fig. 9. Model diagram of the correlation radiometer in the
case of different input signal strengths,
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where Cis a constant and K* = T, /T;. Thus

(81) AS | 2aT1
S Ti -

Since in this case AS corresponds to a fluctuation component,
it corre.ponds to the noise term, so that

(82) S . S
N AS
and thus
T: 1 _ Wy AT- wy
83) =& , = 2Ry —— =2 2218 —0
( 2 ATX 2 b.)L Tn wL .

The fluctuation of the output is predominantly given by AT, since T; is
assumed to be much longer than T, . Thus we may set AT, = AT; = AT

in Eq. (83).

Thus AT s expressed by

[P

TiFoTa | 9L
(84) A'r:..._z.__e___‘l_J-—--

2

h)I .

*

That means that the differential temperature depends on one input
signal temperature T and would be much larger than that of the
Dicke-type radiometer, if we could define such an accuracy for the
Dicke radiometer. Then we cannot say that the correlation radiometer
would be more effective than Dicke radiometer for the case of high
output signal-to-ncise ratio. However for the Dicke radiometer, we
cannot exactly introduce such an "accuracy" in the case of receiving
two signals, because by means of Dicke radiometer, we cannot
simultaneously receive two signals. Even if we could use two antennas
for the Dicke system, we would not be able to obtain a better signal-
to-noise ratio than in the correlation radiometer, as each channel acts
as an independent Dicke-receiver.

If the output signal level is comparable to the noigse level, we

should take the signal power to give unity output signal-to-noise ratio
as the M.D.S., that is

1093-6 32



BT e e

.

)
>

(85) 2R,.- 21 .1,
i ¥
Thus
(86) AT = F\;To . YL (R; > 1>>R, )

“1

for the cagse of Ry >>1 >> R; . This result means t-~t the sensitivity
is greatly aifected by the internal noise and is directly preoportional to
the noise temperature T, and wy/w;. In this cage {B: >> 1 >>R; ) the
M.D.S. would seern to be better than in the Dicke radiometer by a
fa.ctor of.lw L/wys except for factor of order uity.

We may conclude that for the case of a low output giznal-to-noise
ratio, the correlation radiometer would be superior because of the
suppression of the background noise by correlation, even when gignal-
to-internal-noise ratio would be the same for the Dicke and correlation
ra’iometers. However, we must be careful for the correlation radiometer
that is receiving two signals, one of which has a2 much larger strength
than the other, we cannot expect sufficient signal-to-noise ratio, unless
the two signals could effectively be correlated with each other.
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Iv. CONCLUSIONS

Based upon the preceding discussions, we can ccnclude that
at the present time the usefulness of correlation radiometer probahiy
would be limited to some special applications only. For exampie, if
one is interested in measuring the emission from a discretz emission
line spectrum, then one would normally use a narrow bandwidth radio-
meter and the limitations on the multiplier would not be serious.
Instead, one would gain from the flexibility of the correlation radio-
meter for such an application. On the other hand, if one is interested
in rneasuring the reflected radiation of the sun from the moon, the
correlation radiometer is also superior to the Dicke radiometer. Here,
the correlation radiometer would correlate only the radiation of the
sun while the Dicke radiometer would chop the background radiation
of the moon as well as the radiation of the sun reflected from the moon.
This may increase the sensitivity of measuring the reflected signal
despite the loss of bandwidth due to the multiplier. Of course, with
the advancement of the state of the art of electronic devices, multipliers
with a large bandwidth and high operating frequency may be found in the
future such that the limitation on bandwidths is no longer a problem.
In that case, the flexibility of the correlation radiometer would mcke
it 2 more attractive radiometer than the Dicke system.
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APPENDIX I: SIGNAL-TO-NOISE RATIO OF THE CORREIATION
RADIOMETER WITH A SQUARE-LAW DETECTOR
BETWEEN THE AMPLIFIER AND THE MULTIPLIER

Let us consider Fig. A~l and . ig. A-2. The autocorrelation
function of the ouiput of the square-law detector in Fig. A-1 is ex-
pressed by

(A-1) Ri(r)

vy’

(S1+n1)° (S14n1)°

-3 5 I T T2 3
=8 -S1°+25181° +S *m° +8S - n

|y e 2 7 7
+4SxSll snmny + . m n;,z +2nini?

where the primed quantities are functions of (t+ 7) and the unprimed
quantities are functions of t; ti-e detector's specific constant has been
neglected; and the gain of the amplifier has been assumed to be unity.

If we assume that the amplifier has a rectangular band pass
characteristic, the quantities in Eq. (A-1) are given by

s
(A-2) §2 =87 =90,
=z "7z _ 2
n = =0,
7 sin mQT
SS = o‘sz ' e, CO8 WOT
Tmar
— 2 sin wQT
nn = 0‘n ¢ y CO8 WeT .

QT

Then the spectral density of the output of the detector is obtained as

follows,
(A-3) G; (f) = 4 SPQR.I(=;r ) cos 2nfr df
0 '
= (0:1 + "nz, ) [6«) + z.-°-‘-1—-—; f]
_ c
i 1093-6 37 1 (0< f<a)
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Detector Filter |
| y Y
y = (Sl”‘a) l FL;OW Outout
Multiplier—> Pass —> Ouipu
R (T ) Yy TP Filter
i ]
Square %ow l
Law |—»f Pass H TN
Deiector Filter |, B, RYTI=R, 4o +RpdT+6) + Ry (T)

Sa N2

—>=t\mplifier

Fig. A-

fot 3

1. Model diagram of the currelation radiometer with
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Fig. A-2. Model diagram of the correlation radiometer,
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where O{f) is a delta function. The first term of Eq. (A-3) shows the
dc component of the output and the second term shows the ac part of
the output. The output power of the low pass filter, which has a
rectangular pass band from 0 to B, is expressed by

(A-4) P Sj G, {f) af

P‘dc . Plac

where
L 4 2 Z z
vA-5) P de= (°S; + °ng.)
- 2 2 z.E__’__
(A-6) P ag = Z(cxsl + cnx) a, (on1 >>8,) .

Thus the autocorrelation function of the input voltage to the multiplier
is given by

2

2 2 2 2 2 ﬁl
WD R =g o) H s, von)t T

where ¢, {7) is the Fourier transform of the spectral density of the
low pass filter output.

Let
’
(~-8) R, {7} = Rae, ¥ RacS, ¥ Racnx
where
(.A'9) Rdcl = (C}'Sl + O'nl)
4 pl
Rac s, = 2<stx —a: &, (7)
2 2 2 El
Racn, * 2%, (2"51 +0n, ) o, by fr )
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In the equation (A-9) Ry, is the d-c term of the autocorrelation
function of both the signaci and the noise components; RS, is the a~c
term of the autocorrelation function of the signal; and Ra.n, is that
of the noise. By a similar manipulation we can obtain RS {7, T + 9),
where 0 is the time delay, with which S, should be correlr*ed to S, ,
that is

(A-10) R; (T,7+46) = Rg, +Ryc s, (T40)+ Rycp, (7)

The output of the multiplier is obtained by means cf the correlation
between those two components. In practice we can balance the com-
ponents R4c, and Ry~ out before the input stage of the multiplier, so
it is sufficient for us to consider only the ac-terms in Eq. (A-8) and
(A-10). They are expressed by

(-1 RacSix g 4,0

Rocm % =5 6 (1

Rac Sz -g-g- ¢, (1+0)

Racmr ot B2 4y (1 .

2

In order to obtain the signal-to-noise ratio of the output, let us
consider that the all components in the right side of the dotted line
AA’in Fig. A-1 correspond to all ihe components in ths right side of
the dotted line BB in Fig. A-2.

The autocorrelation functions of the signal and the noise components,

Rac S{T) and Rac n(7 in Fig. A-1 then correspond to those of the signal
and noise components RS(T) and Rn('r) in Fig. A-2. These relations are
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RacS; = Rgln = dg x(7

Racn; = R-nl (1) = q“nl Yy (T)
(A-12)

RacS: Rg(T+ 0) = xpsx('r+ 0)

Racn, R-nz () = dn, vz (1)

where x{T) and y(7) are the Fourier transforms of the spectral densities
of the amplifier output, related to the sigral and noise, respectively,
and $g and ¢, are their constant terms ag used in the preceding sections.

From Eqgs. {A-9) and {A-12), we obtain the following relations
by equating the constant terms of {A-11) to those of (A~12)}, and ¢, (7
and ¢, (1) to x{1) and y{7;

. A e
bs, B

(A-13) bRy

Thus the output signal-to-noise ratio can be obtained by substituting
the relations (A-13) into Eq. (24), that is,

2
2
(24) % = kK yg L1
‘leqJNz Wi,
hence
(A-14) S« . 8
N Y
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1093-6

where we have assumed @ = a, = a,, B =8, =8, ; and mLandw
in Fig. A-2 are replaced by Yand B in Fig. A-i. Equation (A-14S
means that the signal-to-noise ratio is proportionalto g/y.

From this result we are aole to show that the M.D. S. s
proportioral to the ratio of the bandwidth of the integrator to that of
the preceding multiplier, that is to say, the ratio of wyto w_..
{Notations, vy and wy , used in the preceding section then correspond
to B and y directly.)
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APPENDIX II. SENSITIVITY CONCEPT

When the two signal strengths at the input terminals of the two
receivers are very different, we must treat carefully the concept of
the receiver sensitivity. For example, if the output signal level is
much larger than the noise level, minimum detectable sensitivity
would no longer be a suitable parameter to characterize the receiver.
It would be better to dafine the differential temperature AT, which
corresponds to the smallest detectable incrament AS in the output
signal power S. In other words AT signifies some accuracy of
measurement AA. The relaiion between AS and AT is expressed by

(All-1) AS .y AT
S T

where T is the input signal temperature and k is a constant.

The output signal power is proportional to the product of the
two input signal temperatures ,

(AII-2) S= CT,T;

CK T/
where C is a constant and K* = T, /T,. Thus

(AL-3) as . 2Ty
S
T, .

Since in this case AS represents a signal fluctuation, it corresponds
to a noise component {for example N in Eq. (35)),

S . .S
(AI-4) 25 -
Therefore
(AIl-5) s -0 1

N 2 'AT :
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We can introcduce the éoncept of accuracy AA frorm this result,
by setting AT, in Eq. {(AIl-3) equal to AA, since T, is much larger
than T, and AT} is dominant in the fluctuation term.

Concerning the input signal levels, there are four typical cases,
according to the variation of the two input signal -to-noise ratio, say
R, and R, in Eq. {35). Thecse are:

(1) R, >> R, >> l; both signals are much larger than the noise level
and one signal is much larger than the other.

((1') Ry ®* R, >>1; both signals are nezrly the same
and much larger than the noise level.)

(2) R; >> R, ~ 1; one signal is much larger than the other which is
nearly equal to the noise ’evel.

({2') R; ¥ R, < 1; signals and noise level are comparable.)

{3} R; >>1>> R, ; one signal is much larger than the noise icvel,
while the other is much smaller.

({3') Ri ¥ 1 >> R, , one signal is nearly equal level to the roise
level, but much larger than the other.)

{4) 1>>R, >> R; , both signals are much smaller than the noise level
and one signal is much iarger than the other.

((4') 1 >> R, ¥ R, , both signals are nearly same level and much
smaller than the noise level.) For all cases we assume that
two receivers are identical.

Let us consider the signal-to-noise ratio first and the sensitivity
next in each case. In the case of {2')

— 2 « Q

2+.}_+_1._+ 1

Ry R, 'RR;

(AII-6)

AL

where @ = wI/wL.
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This is the most general expression for the signal-to-noise
ratio and cannot be further simplified.

In the case of {1} (and {1'))

(AIL-T) S a a=% (R >1
N o
L KR;_ >> 1/

In this case the signal output level would greatly exceed the noise
level; thus we must use the concept of accuracy here by means of
Eq. (AII-5),

(AII-8) % :Zss" =1 T =g
AT,
where
$§=CT, T,
=C- KT/

Then

(T M

(ATI-9) AT, = 2 =

As the definition of accuracy, put AT, = AA

T wi,

{AII-10) T .

T g
In the case of (2)
(AT -11) 5 5 2R; o (K >>1

N 2R, +1 R, ~ 1 .
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Since usually @ >> 1, the signal-to-noise ratio in this case is much
:arger *unan unity, hence we must consider again the accuracy as
follows; from the relation {Ali-8) and {A:i-11)

2R T 1
-12 LRe oD 1
ta ) 2R, t+1 * 2 AT,
putting AT, =AT; =AA,andR= -2 = T - T o0 T :sthe
YN T FeT, n

2 DA
(AII-13) E__'I:zx_._, o= T1 1
—A——A- + 1 2 AA
Tn
Then
T +j'I‘z +8T. T. @
{AlI-14) OA = L : i n

4qQ

=1 1+J1+823—a
4a( T. )

1

where the minus sign is negle_ted. If %_1_ << 8a

n
_ Ty l T
!AH-lS) AA{Z) = 4a __%l_,_ 8a
1

- ,sz Tg_
2o

_yTiFeT, J_::.

'F)

T3
If T >> 8a
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R el el s LI * A OV s
.‘:,‘1.1..171. 4L VT

AT " -,

R SR ks~ PN

(AII-16) AApy = 1L

4a
S T S ¢
4 f:*
1
In the case of {3),
(AII-17) 5 2R, -0 (Rx >> 1 >
N R, <1 /.

In this case there exist two possible conditions, one is 2R, + @ >31
and another 2R, - a g1,

Under the condition 2R, * a >> 1,

(AII-18) 2R, =11 . 1

nence, putting AT, = AT, = DA(3)

T, F T, |
(AH-19) AA(g =\ 12 e*+e¢ J L
1

w

Under the condition 2R, a £ 1,

(AIl-20) 2R, @ =1
hence

21 wy,
(ALl-21) AT =3 FoT, + —2

I

In the case of (3),

s 2RiR, [Ry®]
(All-22) N ix——rf— a 4 .

R, << 1

Itn
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Under the condition R, - o S}

(am-23) Rk,
R, +1
Thus
(ATI-24) AT = ZT‘Q (+d1+ecta) .
If 8K << L
5
(AII-25) ATy = 2R .
4q
2 W
When 8K? >>-}~
Q
KFT w
(AII-26) AT(f)= ——8"0 | 2L
{2 wy
Under the condition R, ¢ >> 1,
2Ri R, T 1
AII-27 f2 g2 21—
( ) Ri +1 2 AT,

By putting AT; = AT, = AA’(S'}

7 _ 1 . o
(AII'ZS) AA(g")-— E |IT1 + Fe o ’ b.)L
I T l“’L
In the case of {4)

Ry << 1
(am-29) 2 % 2R;R, o
R,<< 1

"71
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In thig case the output signal level could not be much larger
than the noise level, sc we may put S/N equal to unity,

' (AII-30) 2ZRR, * =1
and it seems to be sufficient to treat only the case R, = Rz , i.e.,
the case of {4'). Thus
: Tz
: 2RPa=22— q-1,
T
n
i
' therefore

(AII-31) AT = FeTo 6T
iz “r
1

b

emly Y Creliy b
Mo, By e
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